
Parametric Deformation of Discrete Geometry for

Aerodynamic Shape Design

George R. Anderson ∗

Stanford University, Stanford, CA 94305

Michael J. Aftosmis †

NASA Ames Research Center, Moffett Field, CA 94305

Marian Nemec ‡

Science and Technology Corp., Moffett Field, CA 94305

We present a versatile discrete geometry manipulation platform for aerospace vehicle
shape optimization. The platform is based on the geometry kernel of an open-source
modeling tool called Blender and offers access to four parametric deformation techniques:
lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are
implemented as plugins, and the kernel is controlled through a scripting interface. Surface
sensitivities are provided to support gradient-based optimization. The platform architec-
ture allows the use of geometry pipelines, where multiple modelers are used in sequence,
enabling manipulation difficult or impossible to achieve with a constructive modeler or
deformer alone. We implement an intuitive custom deformation method in which a set of
surface points serve as the design variables and user-specified constraints are intrinsically
satisfied. We test our geometry platform on several design examples using an aerody-
namic design framework based on Cartesian grids. We examine inverse airfoil design and
shape matching and perform lift-constrained drag minimization on an airfoil with thickness
constraints. A transport wing-fuselage integration problem demonstrates the approach in
3D. In a final example, our platform is pipelined with a constructive modeler to paraboli-
cally sweep a wingtip while applying a 1-G loading deformation across the wingspan. This
work is an important first step towards the larger goal of leveraging the investment of the
graphics industry to improve the state-of-the-art in aerospace geometry tools.

I. Introduction

Geometry is the beginning and the end of aerodynamic design. Yet aerospace geometry tools lag behind
the state of the art in geometry processing. The aerospace design community tends to develop in-house,

discrete geometry tools that focus on rapidly providing application-specific functionality while sacrificing
generality, flexibility and often user-friendliness. Meanwhile, the computer graphics (CG) industry has for
decades invested in geometry manipulation techniques, far surpassing the scattershot development of niche
aerospace geometry tools.

In this work we explore a strategy of leveraging advanced CG geometry tools and customizing them for
aerospace design. These tools offer a wealth of sophisticated deformation methods and surface processing
routines. Their robust and efficient geometry algorithms can be used either interactively with intuitive
graphical user interfaces (GUIs), or via scripting interfaces on the back-end, allowing them to serve as
automated geometry engines in design environments. Furthermore, CG geometry tools are highly extensible.
The various special deformation techniques developed by the aerospace community in recent years can be
incorporated as plugins with modest effort. New deformation techniques can be rapidly prototyped on a
flexible and unified geometry manipulation platform.

Our goal is to develop a general platform for deformation of discrete aerospace geometries. The platform
is based on a powerful, open-source 3D modeling suite called Blender.1 Several deformation techniques

∗Ph.D. Candidate, Department of Aeronautics and Astronautics; george.anderson@stanford.edu.
†Aerospace Engineer, Advanced Supercomputing Division, MS 258-5; michael.aftosmis@nasa.gov. Associate Fellow AIAA.
‡Senior Research Scientist, Advanced Supercomputing Division, MS 258-5; marian.nemec@nasa.gov. Member AIAA.

1 of 18

American Institute of Aeronautics and Astronautics

are natively supported, including lattice deformation, cage-based deformation, and skeletal deformation.
Deformation can be interactively parameterized using custom panels in Blender’s GUI. Custom deformation
methods for aerospace design can be developed using a scripting API. We extend Blender’s feature set
by implementing constraint-based (direct manipulation) deformation as a plugin using this API. After a
geometry has been parameterized, our platform serves as a fully-automated geometry engine, providing on-
demand deformations, along with surface sensitivities for gradient-based shape optimization. The platform
can be used alone or pipelined with other geometry tools, including constructive modelers, to enhance an
existing design environment.

To provide perspective on our work, we begin with a comparison of the constructive and deformation
geometry modeling paradigms, followed by a focused survey of discrete geometry deformation techniques.
The main thrust begins in section IV, where we introduce Blender and discuss its geometry manipulation
capabilities. Thereafter we present our geometry platform, which customizes Blender for aerospace design.
We conclude with several shape optimization examples to concretely assess performance of the new tool.

II. Geometry Modeling Paradigms

Every geometric modeler is either a constructor or a deformer. In constructive modeling, a geometry
is built from scratch according to a sequential recipe. Familiar constructive modeling elements include B-
splines, Bernstein polynomials, Bézier curves, NURBS surfaces, and class/shape functions, all of which are
used in aerospace design.2–6 CAD modeling tools are often favored for aerospace design, because they draw
many of these common constructive elements into a single package.7 Another class of constructive modeling
is subdivision surface modeling, in which a coarse initial mesh is evolved to an arbitrarily fine mesh by
iterative refinement.8 Subdivision surfaces have been used for turbine blade optimization.9

Constructive modeling is prevalent in aerospace design, because it is well-suited both to the beginning
and to the end of the design process. Its intuitiveness and topological flexibility are advantageous during
conceptual design. CAD is the standard format for manufacturing once design is completed. Constructive
models also provide a continuous master geometry source, from which discipline-specific surrogate models
can be derived for structural, environmental or aerodynamic analysis.

The fundamental weakness of constructive modeling is the geometry recipe itself, which dictates not only
what a surface can do, but what it cannot do. Poor geometry parameterization can cripple shape optimization
by blindly and inadvertently restricting the design space. This is a persistent problem in CAD-based design
environments. A CAD operator cannot possibly foresee all the parameters that will be necessary for shape
optimization. Worse, a designer may not have access to the original constructive model or the expertise
necessary to alter it. A discrete geometry, such as a surface triangulation or patched surface grid, may be
the only format available. Such legacy geometry is beyond the scope of constructive modeling, unless the
surface is painstakingly (and approximately) replicated in a constructive modeler. Finally, the modeling
software itself may be unavailable, expensive, unreliable, or even defunct. A designer frustrated with the
difficulty of maintaining a fragile constructive modeling pipeline may well choose to discard it in favor of
discrete geometry. Alternately, constructive modeling pipelines can be enhanced by adding deformation
techniques to the mix.

Deformation is an entirely distinct modeling paradigm. Deformation techniques encode modifications to
a baseline geometry. Whereas constructive modelers are the correct tools for establishing topology during
conceptual design, deformation methods are more appropriate for detailed shape optimization. Highly flexible
reshaping is possible with deformation techniques, freeing the designer from the constraints of the original
constructive parameterization. The design space is opened up, enabling shape optimization tools to discover
optimal shapes that the original constructive parameterization could not reach. Some deformation methods
can even deform a computational flow mesh in tandem with the surface, a valuable capability when using
body-fitted approaches.

Optimized geometries typically must be converted back to CAD for manufacturing. While in the past
this commonly-raised point was a serious criticism of discrete geometry, recent developments are removing
some of the barriers between constructive modeling and freeform deformation. Commercial tools now exist
that can transfer geometries between the two domains.10,11 Ideally, future choices between constructive
modeling and deformation will be made based on their respective strengths and not on mundane issues of
format conversion.

2 of 18

American Institute of Aeronautics and Astronautics

III. Deformation of Discrete Geometry

Lattice

Cage

Direct Manipulation

Surface-based

Skeletal

Figure 1: Deformation techniques, depicted schemat-
ically. User-adjusted parameters are in red. Dashed
line is the initial airfoil, solid line is the deformed air-
foil. Though illustrated here in 2D, each technique
extends straightforwardly to 3D.

The modern aerospace designer has a smorgas-
bord of deformation techniques to choose from. But
wading through the literature on the vast body of
methods can be daunting. We provide here a clas-
sification of the major techniques to give context to
our work. Further discussion can be found in a 1999
survey by Samareh.12

Deformation methods are either surface-based or
volumetric. The important distinction between the
two is the geometric region they focus on. Surface-
based methods focus on the surface, while having no
awareness of the encompassing volume. Conversely,
volumetric methods focus on the surrounding space,
while being agnostic to the details of the embed-
ded surface. This sharp dichotomy results in meth-
ods with complementary strengths and weaknesses,
which we discuss in the following sections. Figure 1
depicts the various techniques we discuss.

A. Surface-Based Deformation

Surface-based techniques define a deformation func-
tion on the surface itself. The simplest forms, such
as bump functions, use explicit analytic deformation
functions. As they are conceptually straightforward,
analytic surface-based techniques have a long his-
tory of use in aerodynamic design.13,14

Many modern surface-based deformation tech-
niques instead use variational (or energy-based) for-
mulations, which imitate the deformation physics of
real surfaces. Specifically, they compute the shape
that minimizes some global energy norm, which can
be tailored to produce shapes that minimize cur-
vature, surface area, or other surface characteris-
tics. Berkenstock and Aftosmis15 adapted a non-
linear variational method16 for use in aerodynamic
design. The deformations were of high quality, but
the method proved too expensive for fast-paced de-
sign. Linear variational methods achieve much faster deformations by introducing simplifications to the
physics, at the cost of sacrificing some deformation quality. Botsch and Sorkine17 provide a concise review
of linear variational deformation methods.

Surface-based methods are intrinsically surface-aware, which allows for physically realistic deformations
and makes it easier to preserve geometric features, such as straight leading edges on wings. However, their
reliance on global mesh information means that their computational cost scales with the complexity of
the surface discretization. Variational surface-based methods are usually unaffordable for finely detailed
aerospace configurations, where the number of vertices can easily exceed one million. One common strategy
for evading the computational scaling issue is to work instead with a coarse surrogate of the original surface,
such as the control net of a subdivision surface. Because the surrogate is much simpler, it can be deformed
rapidly. A fine surface can then be generated from the coarse mesh by fast iterative subdivision. Dubé et
al. used this technique for turbine blade design.9

Surface-based methods also impose exacting requirements on the geometry format. Typically a closed
and manifold triangulation is required. As non-aerodynamic disciplines use various incompatible geometry
formats (e.g. structural elements), surface-based methods are ill-suited for multi-disciplinary optimization.
Furthermore, the quality of surface-based deformation is limited by the quality of the surface discretization.

3 of 18

American Institute of Aeronautics and Astronautics

A poor surface can cripple surface-based methods. This forces the designer to worry about surface mesh
quality, an esoteric topic unto itself. Lastly, surface-based methods cannot deform volumetric structures like
CFD meshes, and so they must rely on separate specialized mesh deformation codes.

B. Volumetric Deformation

Volumetric (or spatial) methods define a deformation function within a volume. Surface meshes are then em-
bedded in this volume. Conceptually speaking, the volume is deformed and the embedded surfaces passively
follow. Volumetric methods have three key advantages. First, their computational cost is nearly independent
of the embedded surface’s complexity.a Second, unlike surface-based methods, volumetric methods are im-
partial to the discrete geometry format. They can simultaneously deform surface triangulations, flow meshes,
and even structural models. And third, the deformation quality of volumetric methods is independent of the
surface discretization quality. Disadvantages stem from the inherent lack of surface-awareness. Volumetric
deformation techniques may have difficulty preserving geometric features and if not properly constrained
can easily produce illogical shapes. In section C we discuss two intuitive and reliable methods for properly
constraining volumetric deformers to produce expected deformations.

In the following subsections we give two examples of standard volumetric techniques. These examples are
by no means exhaustive. Gain and Bechmann provide a more comprehensive, user-oriented comparison of
volumetric deformation techniques.18 In another notable method that we do not examine here, radial basis
functions are used to perform unified surface deformation and CFD mesh deformation.19 This method has
recently been applied to the design of transonic wings and helicopter blades.20–22

1. Free-Form Deformation

The oldest volumetric deformation technique (and still the most common) is free-form deformation (FFD),
introduced in 1986 by Sederberg and Parry.23 Figure 2 shows an example of FFD. A 3D lattice of control
points establishes an analytic function on the interior of the lattice. The user moves the control points, which
warp the enclosed volume, and any geometry inside the volume is deformed accordingly. FFD methods use
polynomial splines with compact support that localize the deformation while ensuring continuity. FFD
methods are increasingly being used in aerospace design,2,24–26 and mature commercial tools exist.11

Figure 2: A lattice reshapes a transport fuselage into a notional supersonic fuselage.

2. Cage-based Deformation

An alternate volumetric deformation technique encloses the geometry in a coarse closed surface mesh, called
the cage, as depicted in Figure 3. The basic idea is to use a coarse mesh to guide the deformation of a complex
surface underneath. Like in lattice deformation, the design variables are control points, but in cage-based
methods they are located only on the surface of the cage, not throughout the volume of the lattice. The cage
can take any shape, allowing the designer to specify the number of design variables and to cluster design
variables for detailed control in critical regions.

aStrictly speaking, no deformation algorithm can scale better than linearly with the number of surface mesh vertices.
However, variational surface-based methods usually scale far worse, as they involve solving matrix systems of dimension equal
to the number of vertices.

4 of 18

American Institute of Aeronautics and Astronautics

0.6

0

0.2

0.4

Surface
Sensitivity

Figure 3: A cage reshapes the nose
of a wind tunnel model of a reentry
capsule. Top: original model. Bot-
tom: deformed model. Surface colors
indicate the surface sensitivities to the
highlighted control point.

The deformation function in cage-based methods is the solution
of a smooth partial differential equation (PDE) on the interior of
the cage. This PDE solution is used to determine bindings between
the cage control points and the geometry vertices, a process called
embedding. While the PDE solution may be somewhat computa-
tionally intensive (seconds to minutes depending on the volume dis-
cretization), the PDE solution and embedding happen only once, in
a pre-computation step. After the geometry is embedded, deforma-
tions are extremely rapid, involving only matrix-vector products.

Cage-based methods are somewhat more intuitive than FFD
techniques because they conform more closely to the surface. They
also involve a more manageable number of control points and give
the designer more flexibility in designing a parameterization. Cage-
based methods have proliferated in recent years in the CG indus-
try,18,27,28 but they have yet to be widely used for aerospace design.
A notable exception is the work of Anderson et al.,29 in which a
cage-based method was used for compressor blade design.

C. Reducing the Design Space with Intuitive Parameters

Free-form and cage-based deformation methods are flexible and
general techniques. They can effortlessly parameterize any discrete
geometry, and their underlying mathematics ensure smooth and
rapid deformations. Unfortunately, the clouds of control points in-
volved are cumbersome to use as design variables. For example, a

10×10×10 lattice already involves 3000 design parameters, as each control point can move in three orthogo-
nal directions. In fast-paced design, a smaller set of physically intuitive design variables is preferred. Ideally,
the user would be able to rely on a deformation method’s good intrinsic properties (such as smoothness),
while being shielded from the minutia of its underlying mathematics and from the excessive number of its
control parameters.

The most obvious design space reduction strategy is to group control points by proximity. Manual
grouping can be used to achieve a specific result, but this level of micromanagement can be avoided by using
more automated and visually intuitive methods.

1. Skeletal Deformation

Swept Unswept

Figure 4: A skeleton adjusts the sweep of a supersonic wing. The
underlying lattice-based deformation (not shown) is essentially in-
visible to the user.

One appealing technique is to em-
bed a “skeleton” in the geometry, as
shown in Figure 4. Each “bone” in
the skeleton attaches to nearby control
points. As the user poses the skeleton,
the bones guide the associated control
points, which in turn smoothly deform
the geometry. In section IV we dis-
cuss an implementation of skeletal de-
formation. Using skeletal deformation,
the designer can interact with an intu-
itive skeletal frame, rather than trying
to orchestrate dozens of control points
manually. The underlying lattice is es-
sentially invisible to the user, but its
presence as an intermediary between
the skeleton and the surface guarantees
smooth deformations.

5 of 18

American Institute of Aeronautics and Astronautics

2. Constraint-Based Deformation

An alternate tack is to allow the user to specify the displacements for a certain number of vertices on
the geometry itself, called pilot points. The system then solves for a cage or lattice configuration that
satisfies these positional constraints. This technique is termed direct manipulation because the user prescribes
deformations directly on the surface, rather than indirectly through control points. Direct manipulation is
more intuitive, as its parameters are located on a surface, rather than floating in space like in lattice and
cage-based approaches.

By focusing only on a sparse collection of surface points instead of the entire surface, direct manipulation
brings a helpful degree of surface-awareness to volumetric deformation, while avoiding the computational
expense of standard surface-based methods. Moreover, there is great freedom to choose the number and
location of design variables. Besides positional constraints, many other geometric constraints can be imposed,
including volume, surface area, thickness, linearity and angular constraints. Yamazaki and Mouton developed
a direct manipulation method for aerospace design.26 Their implementation supports both FFD and radial
basis functions as the underlying deformation method. In section V.B we present an implementation of
constraint-based deformation for our platform.

IV. Deformation with Blender

Blender is a versatile open-source digital content creation suite. Its capabilities include geometry mod-
eling, animation, shading, rendering and compositing.1 Like most modern CG geometry toolsb, its native
geometry format is discrete surfaces (e.g. triangulations or surface patches). Blender is designed for com-
posing and rendering hundreds of thousands of visual scenes without user interaction in production environ-
ments. This focus on automation is also well-suited to aerospace design environments, where optimization
frameworks require reliable geometry engines.

Custom plugins can be written with a unified API that provides Python handles to Blender’s efficient
geometry processing routines. A mature GUI facilitates interactive geometry setup. Both the scripting
interface and the GUI invoke the same geometry kernel, so that any operation possible in the user interface
is also scriptable. In the following sections, we distill Blender’s dozen or so deformation methods down to
the three most clearly useful for aerospace design.

A. Lattice Deformation

Figure 5: Two lattices shape an airfoil.

Lattice deformation is Blender’s implementation of
free-form deformation. A rectangular 3D lattice is
placed around the geometry.c A volumetric B-spline
deformation function is defined on the interior of the
lattice, which controls the deformation of any geom-
etry inside the volume. Figure 2 showed a lattice
dramatically recontouring a fuselage. The number
of control points in the lattice and its overall dimen-
sions may be different for each coordinate direction,
but the control points must be evenly spaced within
each direction. If more precise control is needed over
a particular region, a second localized lattice can be
overlaid. This process is demonstrated in Figure 5, where one lattice exerts detailed control over an airfoil’s
leading edge, while a second lattice handles large-scale shape changes.

Lattice deformations have a localized effect on the geometry, because B-splines have finite support. As
depicted in Figure 6, each control point has a region of influence of up to two control points away, and
vertices outside this zone are unperturbed. Lattice deformation is rapid, even for complex geometries.
Typical deformation timings on a modern laptop are given in Table 1.

bAppendix A compares several commercial alternatives to Blender, such as the widely-used Maya and 3ds Max suites.
cThe lattice may also degenerate to 2D or even 1D to allow symmetric deformation.

6 of 18

American Institute of Aeronautics and Astronautics

B. Cage-based Deformation

Figure 6: Surface sensitivity to a lattice control point.
Dark blue corresponds to the highest sensitivity, light
gray indicates zero sensitivity. This 2-D lattice could
be used for planform deformation. To shape airfoil
cross-sections, a full 3-D lattice would be used.

Blender’s cage-based deformation method is based
on work at Pixar by Joshi et al.27 From the user
perspective, the process is visually similar to lattice
deformation. The geometry is enclosed in a simple
closed surface mesh. The surface is then embedded
in the volume (discussed in section III.B.2). The
embedding involves solving Laplace’s equation on
the interior of the cage and then using this solution
to determine the influence of each control point on
different regions of the geometry. Moving the con-
trol points deforms any geometry located within the
cage. Figure 3 showed a cage reshaping the nose of
a reentry capsule using Blender’s implementation.

Each control point is used as a design variable.
Unlike the regular lattice, the cage is free to take
any shape, so long as it forms a closed surface. The
designer can choose the number of design variables
and is free to place the control points in any configu-
ration, allowing detailed control over certain regions
and coarser control over others. Because of the global nature of elliptic PDEs, each control point theoretically
influences the entire geometry. In practice the sensitivity to a control point decays rapidly with distance, as
was depicted in Figure 3. Once the geometry is embedded in the volume, deformations are extremely rapid,
requiring only matrix-vector products. Typical timings are given in Table 1. Cages generally have fewer
control points than lattices, because the cage covers a surface whereas a lattice fills a volume.

Table 1: Typical deformation times (in seconds) on a Core 2
Duo laptop. Timings are averaged over 10,000 deformations.

27-point Lattice 26-point Cage

Vertices Deformation Embedding* Deformation

1.3 K 0.002 1.20 0.0017

6 K 0.009 1.24 0.0020

48 K 0.073 2.17 0.0024

127 K 0.191 6.20 0.0030

185 K 0.289 6.55 0.0029

* Cage embedding happens only once, during pre-computation. Subse-
quent deformations use the same stored embedding. The embedding
time also depends on the resolution of the volume discretization.

C. Skeletal Deformation

In Blender’s skeletal deformation method, a connected configuration of bones is embedded in the geome-
try. Though the bones can be linked directly to the discrete surface, this typically produces non-smooth
deformations near joints. We instead define a two-phase deformation, where the bones deform a volumetric
control grid (either a lattice or a cage), which in turn smoothly deforms the geometry.

This method was illustrated in in Figure 4, where a skeleton swept a supersonic wing forward. With
skeletal deformation, intuitive CAD-like parameters can be used to orchestrate large-scale parametric defor-
mations that can mimic or expand the original constructive parameterization. Taking advantage of Blender’s
ready extensibility, we created a custom plugin for interactive wing parameterization. The tool automatically
generates multi-section wing skeletons based on standard design parameters including taper, span, chord,
twist, sweep and dihedral.

7 of 18

American Institute of Aeronautics and Astronautics

V. Geometry Platform

Our geometry platform serves two functions. During problem setup, it can be used as an interactive
geometry parameterization tool. Once the design parameters are chosen, it serves as an automated deforma-
tion engine, playing a role analogous to a CAD server. An optimization framework can request deformations
through Blender’s scripting interface. In addition to deformations, our platform also provides surface sensi-
tivities for gradient-based design (examples of surface sensitivities were visualized in Figures 3 and 6). As
Blender is open-source it would be possible to compute the surface sensitivities by analytically linearizing
its deformation algorithms, but we have found that finite-differencing gives excellent and reliable results.
Dataflow is managed with the XDDM protocol,30 which simplifies integration with client design frame-
works and provides access to a set of standard services including namespace management, symbolic function
manipulation, and surface mesh differentiation.

Geometry Pipeline: Often a single geometry package is insufficient to allow a designer to fully express
design intent. The designer may wish to exploit attractive features of multiple modelers by chaining them into
a geometry pipeline, or sequence of geometry processing operations. Constructive modelers and deformation
tools can be used in tandem to achieve the desired shape. For example, a geometry pipeline may begin
with a CAD system that instantiates and triangulates a baseline nacelle. In turn, this triangulation may be
deformed with a lattice or cage and then intersected with a wing and pylon generated by other modelers.
Because geometry pipelines may be arbitrarily complex, we ensure that our platform can equitably sit either
upstream or downstream of other geometry tools. Parameters from a constructive modeler can be used
alongside deformation parameters from our platform, helping a designer achieve full design intent.

Extensibility: An important attribute of any general-purpose geometry platform is the ability to expand
its functionality. While many deformation methods are native to Blender, this selection is not comprehen-
sive. Every aerospace design group develops its own particular geometry requirements, which even the best
geometry tools cannot be expected to satisfy. Extensibility is invaluable in a geometry platform, because it
enables design groups to tailor a versatile and robust geometry tool to meet their needs by writing plugins
instead of coding a geometry manipulation tool from scratch. Blender’s API enables a designer to prototype
virtually unlimited geometry deformations, but always within the sandbox of a reliable deformation engine.
However, from the user perspective, the API is optional. It need only be used in cases where more particular
control is required.

Supportability: Extensibility also ensures that a geometry tool will remain useful in the future. As
new deformation techniques are developed both by aerospace groups and in the computer graphics industry,
these methods can be integrated as plugins to a standard discrete geometry platform. We have developed
several custom plugins, including a triangle subdivision tool,8 file converters for various discrete geometry
formats, and a tool that lets Blender serve as a GUI and visualizer for arbitrary third-party modelers. In
the following sections we describe in detail two other major extensions to Blender developed as part of this
work.

A. Interactive Parameterization

Taking advantage of Blender’s readily extensible GUI, we have developed a set of interactive geometry
parameterization tools. The tools allow deformation modes and design variables to be quickly prototyped in
preparation for a design optimization study. In many design environments, the geometry parameterization
phase can be a frustrating exercise in juggling cryptic text files, poorly documented deformation codes, format
converters and visualization tools. Our platform encapsulates the entire process in one visual environment,
helping the designer to quickly hone in on a good parameterization by showing precisely how a set of
parameters will deform the geometry.

Specifically, we have developed a wing skeleton prototyping tool, which allows the user to specify sectional
span, twist, sweep and dihedral, using a skeleton conforming to the wing planform. The wing skeleton
displayed in Figure 4 was prototyped in seconds using this tool, as was the skeleton used for planform
deformation in the examples section. We have also developed automatic cage and lattice generators, which
created all of the cages and lattices shown in this paper, such as the cage in Figure 3.

8 of 18

American Institute of Aeronautics and Astronautics

B. Pilot Points: Constraint-Based Deformation

We present here a basic constraint-based deformation technique (introduced in section III.2), which we have
implemented as a Blender plugin. In this method, the geometry is reshaped using a small set of “pilot points”
located directly on the surface as design variables. From the designer’s perspective, using pilot points is far
simpler than trying to orchestrate clouds of control points floating in space.

By construction, any user-specified geometric constraints are intrinsically included in the parameteri-
zation. Put another way, we automatically restrict the design space to include only shapes satisfying the
constraints. The parameterization inherently cannot produce an invalid shape (as defined by the user).
Specifically, given a set of design variables X and constraints, we compute an intermediate deformation
mapping D to obtain a new surface T that satisfies the constraints. Smooth deformations are ensured by
using a lattice or cage as the intermediate deformer, which is automatically generated and essentially invisible
to the user.

Each design variable X is treated by the solver as a constraintd fi, which is a function of the surface T
(e.g. a triangulation) and possibly also of the deformation parameters in D (e.g. control points of a cage or
lattice):

fi (T (D) ,D) = X (1)

We do not directly control the entire surface, only a sparse collection of points on it. To solve for a deformation
mapping D satisfying (or most nearly satisfying) the system of constraints fi, we now write the system as a

matrix equation using the notation F = [f1, f2 . . . fn]
T

:

FD = X (2)

and solve iteratively using

∆D = −K
(
∂F

∂D

)−1

∆X (3)

where ∆X is the difference between the current and target design variable values (i.e. the deviation from
a satisfied set of constraints), and K is a diagonal matrix that controls the step size for each constraint
independently. For a fully linear system of constraints with respect to the surface vertices, K can be set
to the identity matrix, and the algorithm will reach the solution in one step. But if any constraint in the
system is nonlinear, the solver must iterate, and K will affect convergence speed and stability.

The term ∂F
∂D is the sensitivity of the constraints to the deformation mapping. Note that the matrix

∂F
∂D is not square in general, so Equation 3 implies a pseudo-inverse. For under-constrained systems, this
returns the perturbation vector ∆D of smallest magnitude. For over-constrained systems, it returns the
least-squares fit with the smallest overall constraint error. To compute ∂F

∂D , we first expand it into a product
of independent terms

∂F

∂D
=
∂F

∂T

∂T

∂D
(4)

The term ∂F
∂T is the sensitivity of the constraint values to the geometry. It is derived analytically for each

type of constraint. The second term, ∂T
∂D , is the sensitivity of the surface to the deformation mapping.

While at first glance the matrix inversion in Equation 3 may appear expensive, in fact the size of the
matrix is manageable. The two dimensions of ∂F

∂D are the number of design variables (i.e. pilot points) and
the number of parameters in D (e.g. the number of lattice control points). Importantly, the dimensions of
∂F
∂D are independent of the surface complexity.

For gradient-based design, we also provide the sensitivity of the entire surface to the sparse set of pilot
point design variables

∂T

∂X
=
∂T

∂D

(
∂F

∂D

)−1

(5)

dTo the user and to the optimizer, the pilot points are viewed as design variables. But to the deformer, which is provided
with a particular set of pilot point locations, these locations are considered constraints that must be satisfied.

9 of 18

American Institute of Aeronautics and Astronautics

Both terms in this product are computed during the constraint solve, so computing the surface sensitivities
requires only an inner product of existing matrices.

We use this deformation technique to internally enforce geometric constraints frequently used in aero-
dynamic shape optimization. For example, thickness can be constrained by prescribing the location of one
surface vertex relative to another vertex:

vi − vj = d∗ (6)

Alternately, setting vj to 0 allows the absolute location of vertex vi to be prescribed, which establishes vertex
vi as a pilot point. The constraint sensitivities for use in Equation 4 are

∂f

∂D
=
∂vi

∂D
− ∂vj

∂D
(7)

Other constraints, such as volume, surface area, projected area, or surface smoothness, are derived in a
similar manner.

VI. Results

We test our geometry platform on several design examples, using a recently-developed aerodynamic design
framework.30 The design framework uses an embedded-boundary Cartesian mesh method for flow solutions.
Objective gradients are computed using an adjoint formulation. Optimization is handled primarily with
SNOPT31 and in some cases with a BFGS quasi-Newton method32 available in the design framework.

A. 2D Inverse Design with Lattice

The first test is intended to verify the consistency and reliability of our geometry platform on a problem
with a known solution: inverse aerodynamic design for an airfoil in subsonic flow (Mach 0.57). We prescribe
an attainable target pressure distribution and examine the convergence from an initial perturbed geometry
to this target.

1. Parameterization and Objective
Thickness Target Profile

Initial Profile

Camber

1 2 3 4 5 6 7 8 9 10

Figure 7: Lattice parameterization for inverse airfoil
design problem. Thickness and camber are set at each
of ten stations.

Figure 7 shows the parameterization. The airfoil is
enclosed in a 10× 2 lattice. At each of the 10 chord
stations, the two control points are linked into or-
thogonal deformation modes corresponding to thick-
ness and camber. Thickness is changed by moving
the two control points in opposite directions. Cam-
ber is obtained by moving them in the same direc-
tion. Of the 20 thickness and camber parameters,
nine serve as active design variables. The initial
shape was obtained by randomly perturbing each
active variable.

The target geometry is the NACA 0012 airfoil
at 3.1◦ angle of attack. We specify a least-squares
objective function to minimize the error between the
actual pressure distribution and the target:

J =

nverts∑
i=1

(
Cp − C∗

p

)2
i

(8)

where the target pressure coefficient C∗
p is specified at each vertex on the triangulation. As we used the same

parameterization to generate the target and initial shapes, we expect that the optimization should recovery
the target shape exactly.

10 of 18

American Institute of Aeronautics and Astronautics

2. Optimization Results

Figure 8 shows the successful recovery of the target airfoil and pressure distribution. As shown in Figure 8c,
the objective function was reduced by 12 orders of magnitude over 50 design iterations, indicating recovery of
the target pressure distribution to machine zero. The deep convergence verifies that our platform performs
accurate and repeatable deformations of discrete geometries.

Flow and adjoint solutions were performed on meshes of about 12,000 cells. Each design iteration required
at most 240 seconds on a current generation desktop CPU.e Computation of surface sensitivities required
about 7 seconds per design variable, using the automatic surface mesh differentiation in the XDDM toolset.
Similar studies using our platform’s internal mesh differentiator cut the geometry processing time roughly
in half.

0 0.2 0.4 0.6 0.8 1
x

-0.06

-0.03

0

0.03

0.06

y

Initial
Final
Target

(a) Airfoil (5× exaggerated thickness)

0 0.2 0.4 0.6 0.8 1
x

-3

-2

-1

0

1

C
p

Initial
Final
Target

(b) Pressure coefficient distribution

0 10 20 30 40 50 60
Design Iteration

10-9

10-6

10-3

100

103

Objective
L2(Gradient)

(c) Objective convergence history

Figure 8: 2D inverse design results (Mach 0.57, α = 3.1◦).

B. Shape Matching

Initial Profile (NACA 0012)

Final Recovered Profile (RAE 2822)

Figure 9: Blender lattice parameterization for shape-
matching problem.

In this example we drive a NACA 0012 airfoil to a
target RAE 2822 airfoil using two different defor-
mation techniques. We solve the shape-matching
problem first using our platform’s lattice deforma-
tion technique (shown in Figure 9) and then using
MASSOUD,24 thereby benchmarking Blender’s lat-
tice deformer against a tool specifically developed
for aerodynamic shape design.

1. Parameterization and Objective

We first enclose the airfoil in a lattice, as shown in Figure 9. The lattice is identical to the one used in the first
example, except that now all 20 thickness and camber parameters are used as active design variables. Next,
we next create an analogous parameterization in MASSOUD, using a control net with 10 chord stations,
aligned with the Blender lattice control points. Thickness and camber can be set at each station, for a
total of 20 active variables. The purely geometric shape-matching objective is a sum of distances between
corresponding vertices:

J =

nverts∑
i=1

(v − v∗)
2
i (9)

where vi are the current vertex coordinates and v∗
i are the corresponding target vertex coordinates.

eXeon Westmere processor

11 of 18

American Institute of Aeronautics and Astronautics

2. Optimization Results

Both Blender and MASSOUD closely recovered the RAE airfoil. Figure 9 shows the final airfoil and lattice
configuration reached by the Blender parameterization after about 50 design iterations. Figure 10 compares
the best airfoils produced by the two methods. The frame on the right of Figure 10 shows a closeup of the
trailing edge, where the largest difference between the final shapes is apparent. Some discrepancy is indeed
expected, as Blender’s lattice deformation and MASSOUD’s NURBS surfaces are mathematically related
but not identical.

0.85 0.9 0.95 1
x

-0.02

-0.01

0

0.01

0.02

0.03

y

NACA 0012
RAE 2822 Target
Blender
MASSOUD

0 0.2 0.4 0.6 0.8 1
x

-0.06

-0.03

0

0.03

0.06

y

NACA 0012
RAE 2822 Target
Blender
MASSOUD

Figure 10: Shape-matching results. Left: Full airfoil (6× exaggerated thickness), Right: Trailing edge.

10 20 30 40 50
Design Iteration

10-4

10-3

10-2

10-1
Sh

ap
e-

M
at

ch
in

g
O

bj
ec

tiv
e

MASSOUD
Blender

NACA 0012

Recovered Shapes

10 20 30 40 50
Design Iteration

10-4

10-3

10-2

10-1

Sh
ap

e-
M

at
ch

in
g

O
bj

ec
tiv

e

MASSOUD
Blender

Figure 11: Objective convergence history
for shape-matching example.

Figure 11 shows the convergence of the shape-matching ob-
jective function. The MASSOUD parameters converged more
rapidly, but the Blender parameters achieved a convergence
about two times deeper. The discrepancies at the leading and
trailing edges shown on the right side of Figure 10 contribute
to this difference in objective convergence. More control points
would reduce the error further. But even with a modest num-
ber of design variables, the shape recovery with both techniques
is quite good, showing that Blender can provide functionality
similar to that of MASSOUD.

C. Constrained Airfoil Design with Pilot Points

In this example we optimize an airfoil for flight at two Mach
numbers using the direct-manipulation deformation technique
developed in section V.B. We impose thickness constraints and
seek to minimize drag while maintaining lift.

1. Parameterization and Objective

Pilot Points Thickness Constraints

Initial

Final

Figure 12: Pilot points parameterization.

Figure 12 shows the airfoil parameteriza-
tion. Several “pilot points” on the up-
per and lower surfaces of the airfoil are
used as design variables. Thickness con-
straints are added at 30% and 70% chord
by linking the corresponding points on
the upper and lower surfaces using Equa-
tion 6. These two stations are free to re-
locate horizontally and vertically, but the
parameterization intrinsically preserves
the thicknesses throughout the optimiza-
tion. A background 12 × 5 lattice serves

12 of 18

American Institute of Aeronautics and Astronautics

as the intermediate deformer (called D in section V.B). Our constraint-based deformation plugin solves the
system of constraints for a new lattice configuration, which generates a new surface satisfying the constraints.
As the design variables and constraints are all linear, each deformation takes only a single iteration.

The pilot points at the leading and trailing edge are held fixed. The remaining pilot points can move
vertically, and a few near the leading edge can also move horizontally. In total, there are 16 geometric
design variables, in addition to the angle of attack at each design point. We seek to minimize drag while
maintaining lift at two design points. The objective function is a weighted sum of lift and drag functionals:

J = CD1 + 10

(
1− CL1

C∗
L

)2

+ CD2 + 10

(
1− CL2

C∗
L

)2

(10)

where C∗
L is the target lift coefficient. The two design points are Mach 0.7 and Mach 0.74. The target lift

coefficient is set to 0.56 at both design points, which is equal to the initial airfoil’s lift coefficient (based on
a unit planform) at Mach 0.7 and 3◦ angle of attack.

2. Optimization Results

0 0.2 0.4 0.6 0.8
x

-0.05
-0.025

0
0.025
0.05

y
Initial
Final
Pilot Points0 0.2 0.4 0.6 0.8

x

-0.05
-0.025

0
0.025
0.05

y

Initial
Final
Pilot Points

12% 7.2%

Figure 13: Optimized airfoil, showing pilot points and thickness
constraints at 30% and 70% chord.

Figure 13 shows the optimized airfoil
shape after 30 design iterations. The
thickness constraints at 30% and 70%
chord were necessarily met at every de-
sign iteration, because they were intrinsic
to the parameterization. The 30% chord
station shifted slightly downward, while
the 70% chord station moved upward. As
shown in Table 2, lift was maintained
at both design points, and the optimizer
(SNOPT) substantially reduced the drag at both Mach numbers. Figure 14 shows the weakened transonic
shocks at both design points. The waviness in the optimized pressure distributions is due to our particular
choice of pilot points. Additional design variables near the trailing edge on the lower surface could give the
optimizer freedom to improve the aft-loading of the airfoil. Nevertheless, this case successfully demonstrates
the handling of geometry constraints in constraint-based deformation.

Table 2: Airfoil drag minimization results.

Mach 0.70 Mach 0.74

CL CD L/D CL CD L/D

Initial 0.56 0.0094 59 0.56 0.0202 28

Optimized 0.55 0.0033 167 0.56 0.0034 164

0 0.2 0.4 0.6 0.8
x

-1.5

-1

-0.5

0

0.5

1

C p

Initial
Final

(a) M 0.7 (final α = 2.7◦)

0 0.2 0.4 0.6 0.8
x

-1.5

-1

-0.5

0

0.5

1

C p

Initial
Final

(b) M 0.74 (final α = 2.3◦)

Figure 14: Pressure profiles for pilot points design problem.

13 of 18

American Institute of Aeronautics and Astronautics

D. Transonic Wing-Fuselage Integration with Skeleton and Lattice

R2R1

56 Control
Points

Sweep

Span

Dihedral

Twist

Skeleton

Figure 15: Wing-fuselage parameterization. Top:
Skeleton controlling wing planform. Center: Lattice
controlling fuselage radius (only two stations shown).
Bottom: Lattice controlling airfoil shape.

In this example we perform drag-minimization at
fixed lift for a transonic wing-body configuration at
Mach 0.78. This example demonstrates the use of
skeletal deformation for planform variations in con-
junction with lattice deformation for airfoil defor-
mation and fuselage contouring.

1. Parameterization and Objective

Figure 15 shows the initial geometry and the
component-wise parameterization. The wing trian-
gulation has about 86,000 vertices. Its shape is con-
trolled by a lattice and a skeleton. The two deforma-
tions are applied sequentially. First, a 7× 4× 2 lat-
tice modifies the airfoil cross-sections. We constrain
the control points in the lattice to move only in the
normal direction, though in general they can move
in any direction. B-splines loft the deformation be-
tween the four spanwise sections. For this example,
we chose to demonstrate the maximum flexibility of
the lattice deformer by using all but 10 of the 56 lat-
tice control points as design variables. For applica-
tions that require fewer design variables, the control
points can be linked as demonstrated earlier in the
first two airfoil design examples. After the lattice
deformation is applied, a skeleton reconfigures the
planform by setting span, sweep, twist and dihedral
at four stations.

The fuselage triangulation has about 56,000 ver-
tices and is re-contoured with a 2 × 2 × 15 lattice.
Sectional radius parameters are created by linking
the 2 × 2 square of lattice control points at each of
the 15 axial stations along the fuselage. Finally, the
wetted surface of the wing and fuselage configura-
tion is extracted to form a CFD-ready triangulation.

To demonstrate the full flexibility of our geometry platform, we use nearly all the geometric parameters
as active design variables. Span and dihedral are held fixed, and we allow only three fuselage radii near the
wing root to change. For this transonic design problem, we expect the drag to be most sensitive by far to the
wing lattice variables, which control the airfoil shape. Nevertheless, we include the fuselage and planform
parameters to demonstrate the full range of deformations possible using our platform. With the angle of
attack as the final variable, there are 58 active design variables in all. The objective function is

J = CD + 5

(
1− CL

C∗
L

)2

(11)

with the target lift C∗
L set to the baseline shape’s lift coefficientf at the initial angle of attack.

2. Optimization Results

Table 3 summarizes the aerodynamic improvement after 20 design iterations. Lift was maintained, while drag
was reduced by 22 counts. Figure 16 shows the changes in pressure distribution across the wing planform
and at three span stations. From the wing root to the trailing edge extension break (at 42% semispan),
the flow has become essentially shock-free. While not as dramatic, shock reduction is also clearly evident

fLift and drag are computed on the entire wing-fuselage configuration. The reference area is always the planform area of
the original wing.

14 of 18

American Institute of Aeronautics and Astronautics

outboard along the wing’s span. Because the chord dimension of the rectangular lattice was sized to fit the
large wing root, the lattice was too sparse near the tip. The lattice resolution was too coarse to reshape the
outboard region as effectively as the inboard sections.

The surface sensitivities to the design variables were computed in parallel on 24 processors. Blender is
open-source, avoiding the software license limits that often prevent parallel scalability with commercial codes.
Each design variable can be processed by its own instance of our geometry platform. This example shows
that our platform can readily manage a combination of local and global shape changes. It also demonstrates
our platform’s facility with exercising precise control over local shape changes, a necessary capability for
transonic wing design.

Table 3: Wing-body integration results.

CL CD L/D

Initial 0.313 0.0148 21.2

Optimized 0.313 0.0126 24.7

2.5 2.55 2.6 2.65 2.7 2.75
x

0.06

0.08

0.1

0.12

y

Initial
Final

2 2.1 2.2 2.3 2.4 2.5
x

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

y

Initial
Final

2

x
-0.14
-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

y

Initial
Final

20%

42%

42% Semispan20% Semispan 80% Semispan

Cp
 0.1
 0.0
-0.6
-1.2
-1.4

x/c

-1

-0.5

0

0.5

Cp

Baseline
Final

Baseline Final Design

80%

-1.5

-1

-0.5

0

0.5

Cp

x/c x/c

Cp

Scaled 4x Scaled 4x

x/c

Cp

Scaled 4x

-1

-0.5

0

0.5
x/c

-1

-0.5

0

0.5

Cp

Baseline
Final

x/c

-1

-0.5

0

0.5

Cp

Baseline
Final

Figure 16: Aerodynamic results for wing-body integration problem.

15 of 18

American Institute of Aeronautics and Astronautics

E. Geometry Pipeline Example

In this example we use our platform to augment the functionality of an existing constructive modeler. We
start with a wing generated by RAGEg, a commercially available constructive aerospace geometry tool. The
constructive model controls the wing shape with hundreds of design parameters. While these parameters
allow instantiation of a wide range of shapes, they do not directly permit certain deformation modes of
interest. Instead of attempting to re-parameterize the constructive model (which may or may not be possible,
depending on the desired deformation), we add the necessary parameters using our platform as a second
stage in a geometry pipeline.

RAGE

Blender Lattice

RAGE

1-D Lattice

Operation 1:
Add Tip Sweep

Operation 2:
Add 1-G Loading

RAGE
Model

Final shape

Figure 17: Geometry pipeline.

Figure 18: Final combined deformation.

We consider two new deformation modes that
are commonly either missing from constructive mod-
elers or tedious to implement. The first gives the
wingtip a parabolic sweep. We lay a 2D lattice over
the wingtip to perform the necessary planform de-
formation, as shown in Figure 17. The second de-
formation mode is an approximation of 1-G flight
loading dihedral, which we generate using a 1D lat-
tice extending in the span direction.

We are able to use our platform as a post-
processing tool for detailed modifications, while
keeping the advantages of a powerful constructive
modeling tool. The designer can express design in-
tent more fully and simply by taking advantage of
the strengths of each tool, rather than trying to force
one tool to do everything. Design parameters from
both the constructive modeler and our platform can
be used simultaneously for shape optimization.

VII. Summary and Conclusions

We have developed a platform for deformation of discrete geometry. The platform is implemented in
the open-source tool Blender, capitalizing on tremendous investment by the CG industry in geometry tech-
niques. The platform supports lattice and cage-based deformation, as well as intuitive methods such as
skeletal deformation. Taking advantage of Blender’s extensibility, we have implemented a direct manipula-
tion deformation algorithm as a plugin. We have also developed interactive tools for rapidly prototyping
aerospace geometry parameterizations. Geometry deformation is scriptable and fully automated, and the

gRapid Aerospace Geometry Engine33

16 of 18

American Institute of Aeronautics and Astronautics

platform provides surface sensitivities along with the deformations. We tested our platform as an automated
geometry engine on several aerodynamic shape optimization examples, evaluating its performance on 2D
airfoil design and shape-matching problems and on a 3D wing-body integration problem. We showed that
the platform can be pipelined with other geometry modelers to permit new modes of deformation.

Looking to the future, automated shape optimization is certain to play an ever-increasing role in design.
From the computational standpoint, automated aerospace design environments bear close resemblance to
large-scale rendering environments in the computer animation industry. Both depend on reliable, automated,
and scriptable geometry tools. A cross-pollination of ideas would lead to far superior discrete aerospace
geometry tools than exist today. In developing this platform, we hope to provide the aerospace community
with basic geometry manipulation functionality that has long been considered standard by the computer
graphics industry. We plan to develop a more comprehensive system for constraint-based direct manipulation
and to further develop interactive parameterization tools. We also hope to test our tool on multidisciplinary
deformation applications, such as aero-elasticity modeling.

Acknowledgments

The authors wish to thank NASA Langley for permission to use MASSOUD, and Desktop Aeronautics
for permission to use RAGE. We are also are grateful to Antony Jameson (Stanford) for helpful discussions.
This work was supported by the NASA Ames Research Center contract NNX09SE60G.

References

1www.blender.org.
2Hicken, J. E. and Zingg, D. W., “Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and

Mesh Movement,” AIAA Journal , Vol. 48, No. 2, February 2010.
3Désidéri, J.-A., Majd, B. A. E., and Janka, A., “Nested and Self-Adaptive Bezier Parameterizations for Shape Optimiza-

tion,” Journal of Computational Physics, Vol. 224, No. 1, May 2007, pp. 117–131.
4Duvigneau, R., “Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization,” Tech.

Rep. 5949, INRIA, 2006.
5Fudge, D. M., Zingg, D. W., and Haimes, R., “A CAD-Free and a CAD-Based Geometry Control System for Aerodynamic

Shape Optimization,” 43rd AIAA Aerospace Sciences Meeting and Exhibit , No. 2005-0451, Reno, NV, January 2005.
6Kulfan, B. M., “Universal Parametric Geometry Representation Method,” J. Aircraft , Vol. 45, No. 1, January 2008,

pp. 142–158.
7Nemec, M. and Aftosmis, M. J., “Aerodynamic Shape Optimization Using a Cartesian Adjoint Method and CAD Ge-

ometry,” 24th Applied Aerodynamics Conference, No. 2006-3456, San Francisco, CA, June 2006.
8Persson, P.-O., Aftosmis, M. J., and Haimes, R., “On the Use of Loop Subdivision Surfaces for Surrogate Geometry,”

15th Annual Meshing Roundtable, October 2007.
9Dubé, J.-F., Guibault, F., Vallet, M.-G., and Trépanier, J.-Y., “Turbine Blade Reconstruction and Optimization Using

Subdivision Surfaces,” 44th AIAA Aerospace Sciences Meeting and Exhibit , No. 2006-1327, Reno, NV, January 2006.
10www.integrityware.com/subdnurbs.html.
11www.gosculptor.com.
12Samareh, J. A., “A Survey of Shape Parameterization Techniques,” CEAS/AIAA/ICASE/NASA Langley International

Forum on Aeroelasticity and Structural Dynamics, Williamsburg, VA, June 1999.
13Hicks, R. M. and Henne, P. A., “Wing Design by Numerical Optimization,” J. Aircraft , Vol. 15, No. 7, July 1978.
14Cliff, S. E., Thomas, S. D., and Hawke, V. M., “Swing-Wing Inline-Fuselage Transport Design Studies at Supersonic

Flight Conditions,” Vol. AIAA Paper 2009-7073, Hilton Head, SC, September 2009.
15Berkenstock, D. C. and Aftosmis, M. J., “Structure-Preserving Parametric Deformation of Legacy Geometry,” 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, No. 2008-6026, Victoria, BC, September 2008.
16Botsch, M., Pauly, M., Gross, M., and Kobbelt, L., “PriMo: Coupled Prisms for Intuitive Surface Modeling,” Eurographics

Symposium on Geometry Processing, 2006.
17Botsch, M. and Sorkine, O., “On Linear Variational Surface Deformation Methods,” IEEE Transactions on Visualization

and Computer Graphics, Vol. 14, No. 1, January 2008.
18Gain, J. and Bechmann, D., “A Survey of Spatial Deformation from a User-Centered Perspective,” ACM Transactions

on Graphics, Vol. 27, No. 4, October 2008.
19Jakobsson, S. and Amoignon, O., “Mesh deformation using radial basis functions for gradient-based aerodynamic shape

optimization,” Computers and Fluids, Vol. 36, No. 6, July 2007, pp. 1119–1136.
20Morris, A. M., Allen, C. B., and Rendall, T. C. S., “Domain-Element Method for Aerodynamic Shape Optimization

Applied to a Modern Transport Wing,” AIAA Journal , Vol. 47, No. 7, 2009.
21Rendall, T. C. S. and Allen, C. B., “Unified Fluid-Structure Interpolation and Mesh Motion using Radial Basis Functions,”

Int. J. Numer. Meth. Eng., Vol. 74, 2008, pp. 1519–1559.

17 of 18

American Institute of Aeronautics and Astronautics

22Allen, C. B. and Rendall, T. C. S., “CFD-Based Shape Optimization of Hovering Rotors Using Global and Local Param-
eters,” 28th AIAA Applied Aerodynamics Conference, No. 2010-4236, Chicago, IL, June 2010.

23Sederberg, T. W. and Parry, S. R., “Free-Form Deformation of Solid Geometric Models,” ACM SIGGRAPH , Vol. 20,
No. 4, August 1986.

24Samareh, J. A., “Multidisciplinary Aerodynamic-Structural Shape Optimization using Deformation (MASSOUD),” 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, No. 2000-4911, Long Beach, CA,
September 2000.

25Samareh, J. A., “Aerodynamic Shape Optimization Based on Free-Form Deformation,” 10th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, No. 2004-4630, Albany, NY, July 2004.

26Yamazaki, W., Mouton, S., and Carrier, G., “Geometry Parameterization and Computational Mesh Deformation by
Physics-Based Direct Manipulation Approaches,” AIAA Journal , Vol. 48, No. 8, August 2010, pp. 1817–1832.

27Joshi, P., Meyer, M., and DeRose, T., “Harmonic Coordinates for Character Articulation,” Pixar Technical Memo, 2007.
28Ben-Chen, M., Weber, O., and Gotsman, C., “Variational Harmonic Maps for Space Deformation,” ACM , Vol. 28, No. 3,

August 2009.
29Anderson, W. K., Karman, S. L., and Burdyshaw, C., “Geometry Parameterization Using Control Grids,” 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, No. 2008-6028, Victoria, BC, September 2008.
30Nemec, M. and Aftosmis, M. J., “Parallel Adjoint Framework for Aerodynamic Shape Optimization of Component-Based

Geometry,” Vol. AIAA Paper 2011-1249, Orlando, FL, January 2011.
31Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,”

SIAM Journal on Optimization, Vol. 12, 1997, pp. 979–1006.
32J E Dennis, J. and Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations,

Prentice Hall, Englewood Cliffs, NJ, 1983.
33Rodriguez, D. L. and Sturdza, P., “A Rapid Geometry Engine for Preliminary Aircraft Design,” Vol. AIAA Paper

2006-929, Reno, NV, January 2006.

Appendix

A. Comparison of Geometry Tools

Blender’s open-source status is highly advantageous in terms of cost and therefore scalability. Unlimited
instances of the program can be active as geometry engines running in parallel, without facing the license
limits typical of commercial software. Nevertheless, the computer graphics industry is quite large, and many
powerful commercial tools are also available.

Table 4 compares key features of the most popular software packages. Scripting is available in every
package, but only the more powerful suites are designed to be driven remotely in an automated design en-
vironment. Most of these more advanced packages also support Unix, a crucial feature for many aerospace
design environments. While most of the geometry tools support more than one scripting language, Python
is currently the most common. Each package has its own flavor and offers a different variety of deformation
techniques and mesh processing routines. As a general rule, the more expensive packages are more compre-
hensive in this aspect. On the other hand, despite being free, Blender has a quite useful range of deformers
and is competitive with the most powerful suites.

Table 4: Comparison of nine widely-used computer animation packages.

Price* Automated** Unix Python Other languages

Blender 0 ! ! ! -

Maya 3495 ! ! ! MEL

3ds Max 3495 ! # # MaxScript

SoftImage XSI 2995 ! ! ! Perl, VB, JavaScript

Houdini 1995 ! ! ! HScript, VEX

Lightwave 1495 # # ! LScript

Cinema 4D 995 # # ! COFFEE

Modo 995 # # # Perl, LUA

ZBrush 699 # # ! ZScript

* Prices are in USD for a standard single-user license as listed on each product’s website on 5
December 2011.

** Automated refers to the ability of the software to be called remotely in scripted batch mode.

18 of 18

American Institute of Aeronautics and Astronautics

	Introduction
	Geometry Modeling Paradigms
	Deformation of Discrete Geometry
	Surface-Based Deformation
	Volumetric Deformation
	Free-Form Deformation
	Cage-based Deformation

	Reducing the Design Space with Intuitive Parameters
	Skeletal Deformation
	Constraint-Based Deformation

	Deformation with Blender
	Lattice Deformation
	Cage-based Deformation
	Skeletal Deformation

	Geometry Platform
	Interactive Parameterization
	Pilot Points: Constraint-Based Deformation

	Results
	2D Inverse Design with Lattice
	Parameterization and Objective
	Optimization Results

	Shape Matching
	Parameterization and Objective
	Optimization Results

	Constrained Airfoil Design with Pilot Points
	Parameterization and Objective
	Optimization Results

	Transonic Wing-Fuselage Integration with Skeleton and Lattice
	Parameterization and Objective
	Optimization Results

	Geometry Pipeline Example

	Summary and Conclusions
	Comparison of Geometry Tools

